Auctions for Renewable Energies Model-based Analysis

Marijke Welisch *TU Wien*

Vasilios Anatolitis *KIT*

Presentation held at Strommarkttreffen 05/08/16, VKU, Berlin.

🕲 🕗 🏟 ΛURES

AURES: Who we are

- A coordination and support action under the EU Horizon2020 programme
- Project runs from January 2015 to December 2017
- Eight partners from seven EU countries
- Cooperation with policy makers, market participants and other stakeholders.

AURES project at a glance

AURES combines

Target-oriented analysis

empirical analysis interviews with stakeholders lessons from other industries auction experiments simulations in energy models

Capacity building activities

workshops webinars case cooperations bi- and multilateral meetings interactive website

...find more information on:

auresproject.eu

Research Question

- How do different auction designs influence auction outcomes?
- Formally capture the incentive structures of RES investors from auctions and reveal the consequences on societal support costs
- Strategic behaviour by market participants will be investigated as well as options of the policy maker to modify structures in order to achieve desirable outcomes
- Starting point is the analysis of wind power auctions in Germany
- From this a modular system will be constructed for Member States to look into their specific auction design planned and potential modifications

Modelling Framework

Auction Specific Design Characteristics

	Dynamic vs. Static	Multi-criteria vs. Price only	Multi vs. Single-Unit	National vs. European
Theoretical implications	Important to model learning as a two step process in the dynamic auction	Start with a one-shot auction (rational agents) and build upon this	Focus on multi-unit (single unit as a special case (mostly wind offshore))	Design criteria change with a larger pool of competitors
Modelling	 There are two types of learning one has to consider: 1. Learning over time (from auction to auction) 2. Learning in the course of the dynamic auction Interdependent or Independent Value Model (in dynamic auctions) 	 Use prequalification criteria or rather quantify different aspects of agents (small actors etc.) and give additional weight to desired criteria 	 Auction wind/solar PV and make use of recent auction trials in different Member States 	 Begin with national auctions If possible test runs with country- cluster examples In 1-2 years, exercise case studies with empirical data

Background Information

- Renewable Power Act (EEG) 2016, Germany implemented auctions in order to determine the future feed-in tariff for the support of renewable energies
- For onshore wind parks, tendering will start in 2017
- Tenders take place for projects that already have a concession via the Bundesimmissionsschutzgesetz (so-called "late tendering")
- Only a small security deposit of 30 €/kW installed capacity is mandatory
- The project is to be built in the upcoming two years after winning the bid. In case of non-realisation, successive penalties come into place. After three years of non-compliance, the awarded bid is cancelled

Source: EEG 2016, http://www.bmwi.de/BMWi/Redaktion/PDF/E/eeg-novelle-2016-kernpunkte-des-kabinettbeschlusses,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

Background Information

- Bid has to include amount of power in kW and bid price in ct/kW with two decimal figures
- 2,800 MW annual amount of capacity tendered, minimum size of 750 kW
- Sorting from the lowest price to the highest; equal price, the lower bid of power is preferred; until the cumulative amount matches the demand
- Accepted power amounts are published in detail, the lowest and highest accepted bid are published, together with a weighted average price
- Price limit: 7ct/kW for the first three auctions; from 01.01.2018: the average of the highest accepted bids of the last three auctions + 8%

Source: EEG 2016, http://www.bmwi.de/BMWi/Redaktion/PDF/E/eeg-novelle-2016-kernpunkte-des-kabinettbeschlusses,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

Model Features

- The first round for wind power in Germany, taking into account the country-specific agent distribution:
 - Financial investors (10-50 MW), Community wind projects (3-18 MW), Project developers (15-50 MW)
 - Costs are assumed to be the same for both and randomly distributed between 5.9 and 6.7 ct/KWh
- If an agent's bid wins, he does not participate in the next auction; new draws for every auction round
- Learning of agents over several rounds
 - 7 years as foreseen in the German EEG, 2,800 MW per year, three rounds per year
 - Agents adapt their bidding behavior according to the previous results
 - Uniform pricing and pay as bid has been implemented and compared

- The agent maximizes his expected utility taking into account the possibility to win in one of the following rounds
- T = 0:

$$E(u(\boldsymbol{b})) = (b_0 - c) \cdot (1 - F(b_0))$$

• T > 0:

$$E(u(\mathbf{b})) = (b_0 - c) \cdot (1 - F(b_0)) + \sum_{t=1}^T \delta^t \cdot (b_t - c) \cdot \prod_{x=1}^t F(b_{t-x})$$

 b_t = bid; c = costs; F(.) = cumulative distribution function of the marginal bid

Preliminary results

- The bid vector is calculated in every round by using the "Truncated Newton (TNC) algorithm". So far, the algorithm and model generate realistic values:
- Uniform:
 - Within each bid vector, the corresponding bids are decreasing in each round, i.e. the later an auction takes places, the more aggressive the bids become for each agent
 - The current bid (b_0) which is solely important for the model can be observed to decrease ceteris paribus in every round for each bidder
- Pay as Bid:
 - In the first rounds, we observe an increase in the average price, as the "cheapest" bidders drop out
- A direct comparison is not yet possible, but policy conclusions are forthcoming

Preliminary results: Pay-as-Bid

Price development over six auction rounds; average prices in ct/kWh, upper left to lower

Preliminary results: Uniform

Price development over six auction rounds; Prices in ct/kWh, upper left to lower right graph:

1.	6.19
2.	6.17
3.	6.09
4.	6.05
5.	6.0
6.	6.0

Next steps

- August 2016: Simulate PV Auction for Germany to verify results in comparison with test rounds executed in 2016
- December 2016: Implement modular stand-alone tool to model different designs and market situations (open source to trigger interest discussion on assumptions)
- Construct case studies and compare to actual data from auction results if available

Any Questions?

Thank you!

Contact

Marijke Welisch

Researcher Gusshausstr. 25-29 1040 Wien welisch@eeg.tuwien.ac.at +43-1-58801 370365

Project coordination:

Lena Kitzing

Researcher Frederiksborgvej 399 DK-4000 Roskilde Ikit@dtu.dk +45 24 65 90 64

Communication and web:

Michael Minter Head of Secretariat Kattesundet 4, 3rd floor DK-1458 København K mm@concito.dk + 45 26 16 64 14

Visit our website: www.auresproject.eu

Follow AURES on Twitter @AURESproject

د به **AURES** الله الم